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Abstract

We introduce an object recognition and localization system in which objects are
represented as a sparse and spatially organized set of local (bent) line segments.
The line segments correspond to binarized Gabor wavelets or banana wavelets, which
are bent and stretched Gabor wavelets. These features can be metrically organized,
the metric enables an e�cient learning of object representations. It is essential for
learning that only corresponding local areas are compared with each other, i.e., the
correspondance problem has to be solved. We achieve correpondence (and in this way
autonomous learning) by utilizing motor{controlled feedback, i.e., by interaction of
arm movement and camera tracking. The learned representations are used for fast
and e�cient localization and discrimination of objects in complex scenes.

1 Introduction

Extracting meaningful structures from data is a di�cult problem which is for a broad
class of applications not satisfactorily solved. On the one hand, there exists a large variety
of arti�cial object recognition systems in which manually generated representations of
objects are used to locate and discriminate objects, e.g. [22, 49, 45]. Just as an example,
in [22] faces are located successfully by matching a manually de�ned face model with a
certain number of free parameters enabling the adaptation to a speci�c face in a speci�c
pose. Because the model of the face is de�ned manually, each time the algorithm is
applied to a new object class, a new representation has to be designed manually again. In
this way in [4] resistors are localized within the framework of the object representation in
[22]. On the other hand, the perspective of the neural network community to use arti�cial
neural nets with little manual intervention as a \black box" has shown its limited success
having its roots in the bias/variance dilemma [11]: If the starting con�guration of the
system is very general it will have to pay for this advantage by having many internal
degrees of freedom resulting in bad generalization abilities |the \variance" problem. On
the other hand, if the initial system has few degrees of freedom it may be able to learn
e�ciently, but there is great danger that the structural domain spanned by those degrees
of freedom does not cover the given domain of application |the \bias" problem.

In this paper we describe a novel object recognition system called ORASSYLL (Object
Recognition with Autonomously learned and Sparse SYmbolic representations based on
Metrically Organized Local Line detectors). In ORASSYLL meaningful structure can be
learned from training data with no or only little manual intervention. Extraction of mean-
ingful structure becomes possible by using appropriately structured a priori knowledge.



a) b) c) 

Figure 1: Path corresponding to a banana wavelet. a: Arbitrary wavelet. b: Corre-
sponding path. c: Visualization of a representation of an object class. Gabor or Banana
wavelets with lower frequencies are represented by line segments with larger width.

We introduce a number of a priori principles to reduce the dimension of the search space
and to guide learning (i.e., to handle the variance{problem). We expect to avoid the bias{
problem because of the general applicability of those principles. Important constraints
are:

PF1 Restriction of object representations to features of a parametrized space correspond-
ing to localized (bent) lines.

PF2 Metric organization of this feature space indicating di�erences in the feature's prop-
erties orientation, curvature and position.

PF3 Hierarchical processing of features.

PF4 Sparse coding.

Other contraints are concerned with the division of the feature space into independent
subspaces (PL1: Independence), its temporal organization (PL2: Correspondence) and
statistical criteria for the evaluation of signi�cant features for an object class (Invariance
Maximization (PE1) and Redundancy Reduction (PE2)). The necessity and biological
plausibility of the constraints are discussed in detail in [18, 15].

In section 2 we formalize PF1 by assigning a local line segment to Gabor wavelets or
banana wavelets respectively (see �gure 1a,b). In addition to the parameters frequency
and orientation banana wavelets possess the properties curvature and elongation. The
space of banana wavelet responses is much larger than the original image: For each quality
(e.g. orientation or curvature) an image, each representing the likelihood of occurence
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Figure 2: a) The robot arm with the camera. b) The \retinal" images produced by
a camera following the robot arm holding a toy{duck. c,i{iv) Signi�cant Features per
Instance extracted in a rectangular region (shown in b,i). c,v) Learned representation. d)
Training data and learned representation for a toy car.

at all pixel positions, is evaluated. In this way we create a feature space up to 240
times larger than the original image. An object can be represented as a con�guration
of a few of these features, therefore it can be coded sparsely (PF4). The feature space
can be understood as a metric space (PF2), its metric representing the similarity of
features. This metric is essential for feature extraction and the learning algorithm (section
3.2). The banana wavelet responses can be derived from Gabor wavelet responses by
hierarchical processing (PF3) to gain speed and reduce memory requirements. The sparse
representation combined with the hierarchical feature processing allows a fast and e�ective
locating.

In order to avoid the necessity of manual intervention for the generation of ground
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b)

c)

d)

i) ii) iii) iv)

Figure 3: One{shot learning: Row a) and c) show the objects to be learned in front of
homogeneous backgound. Row b) and d) show the extracted representations. For all
objects a rectangular grid was roughly positioned on the object as in the �rst image a,i).

truth we equip the system with a mechanism which can produce controlled training data
by moving an object with a robot arm and following the object by �xating the robot
hand. The robot produces training data on which a certain view of an object is shown
with varying background and illumination but with corresponding landmarks having the
same pixel position in the image (see �gure 2). We apply a learning algorithm to these data
to extract object representations comprising only the important features (see �gure 2v).
Another way to avoid manual intervention is one{shot learning (see �gure 3), which
already allows for the extraction of representations successfully applicable to di�cult
discrimination tasks.

This paper is organized in the following way: In section 2 we describe our feature pro-
cessing and the organization of the feature space. The learning of object representations
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Figure 4: Relation between Gabor wavelets (left) and banana wavelets (right).

is described in section 3. In section 4 we apply these representations to object �nding
and discrimination. Simulations are presented in section 5. ORASSYLL is in
uenced
| both, in terms of analogy and in terms of criticism | by another well known system
[21, 46]. In section 6 ORASSYLL is compared with [21, 46]. We discuss di�erences to
other object recognition systems in section 7. In the outlook we discuss further perspec-
tives of our work. This work is based on the PhD thesis [18], in which (in addition to
the object recognition system) the biological motivation, a detailed discussion of the a
priori constraints and some results about the statistics of natural images in connection
with feature transformations within ORASSYLL are discussed.

In order to give the reader the opportunity to understand the algorithm without going
through all the formalisms in most of the subsections �rst a short non-formal description
is given. Then, introduced by phrases such as \formally speaking" or \more formally" a
precise de�nition follows.

2 The Feature Space

In this section we describe the realization of the constraints PF1, PF2 and PF3:

� feature generation based on banana wavelets, which are generalized Gabor wavelets
(section 2.1),

� their metric organization in the feature space (section 2.2),
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Figure 5: The real part of a banana wavelet is the product of a curved Gaussian G
~b(x; y)

and a curved wave function F
~b(x; y).

� their usage as local line detectors (section 2.3), and

� their computation by hierarchical processing (section 2.4).

2.1 Gabor and Banana Wavelets

The basic features of the object recognition system are Gabor wavelets or a generalization

of Gabor wavelets, called banana wavelets. A banana wavelet B
~b is a complex valued func-

tion de�ned on IR� IR. It is parameterized by a vector ~b of four variables ~b = (f; �; c; s)
expressing the attributes frequency (f), orientation (�), curvature (c) and elongation (s)

(see �gure 4 (right)). It can be understood as a product of a constant 

~b with a curved

and rotated complex harmonic wave function F
~b(x; y) and a stretched two{dimensional

Gaussian G
~b(x; y) bent and rotated according to F

~b (see �gure 5):

B
~b(x; y) = 


~b �G
~b(x; y) �

�
F
~b(x; y)�DC

~b
�

with

G
~b(x; y) = exp

 
�
f2

2

�
��2x

�
x cos�+ y sin �+ c (�x sin �+ y cos�)2

�2
+

��2y s�2(�x sin� + y cos�)2
��

and
F
~b(x; y) = exp

�
if
�
x cos�+ y sin �+ c (�x sin �+ y cos�)2

��
:

To ensure that the kernels are DC{free, i.e., that the �lter responses are independent
from the mean grey value intensity, we set
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DC
~b =

R
G
~b(~x)F

~b(~x)d~xR
G
~b(~x)d~x

= e�
�x
2 : (1)

To compensate di�erences of �lter responses of banana wavelets of di�erent elongation it
is set



~b =

�
1 + �s

smax�s
smax

�
jjB~bjj2

where jj jj2 represents the L
2 norm. 


~b ensures a more even distribution of the responses
of the banana wavelets by intensifying responses for small elongation, �s represents the
factor by which the amplitude of a banana wavelet with certain elongation is modi�ed.
In Table 1 the value of �s is shown as well as other parameter settings which are used for
most of the simulations, in the following referred to as \standard settings".

2.1.1 Curve Corresponding to a Banana Wavelet

To each banana wavelet B
~b there can be de�ned a corresponding curve. This curve allows

the visualization of the learned representation of an object (see �gure 1 or 6v). The curve
corresponding to a banana wavelet represents a transition of continuous grey level feature
(represented by a Gabor wavelet or banana wavelet response) to a discrete symbolic
representation based on local line segments. Furthermore, the curve corresponding to
a banana wavelet is used in section 2.4 to speed up feature processing by hierarchical
processing.

More formally the corresponding curve ~p
~b(t) is de�ned as

~p
~b(t) =

 
cos(2� � �)(� c

f (s�yt)
2) + sin(2� � �)( 1f s�yt)

� sin(2� � �)(� c
f
(s�yt)2) + cos(2� � �)( 1

f
s�yt)

!
t 2 [�1; 1]:

2.1.2 Gabor and Banana Wavelets used as Local Line Detectors

Banana wavelets are generalized Gabor wavelets (for Gabor wavelets see, e.g., [6]), they
possess additionally to frequency and orientation the parameters curvature and elongation
(see �gure 4). The approach introduced here does not necessitate on the usage of banana
wavelets but is also applicable with Gabor Wavelets. In section 6 we show that the usage
of curvature is only one among a set of other important di�erences to the older system
[21, 45]. A probably even more important distinctive feature is the usage of kernels as local
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a) 

b) 

i) ii) iii) iv) v) 

Figure 6: i{iv) Di�erent examples of cans and faces. v) The learned representations.
('Coca-Cola,' 'Coke,' 'Coca-Cola Classic,' and the Dynamic Ribbon device are trademarks
of The Coca-Cola Company)

line detectors within the object representation: In ORASSYLL objects are represented
as a sparse and spatially ordered arrangement of local (curved) line segments as symbolic
features. In this sense, Gabor wavelets and banana wavelets can be applied as local line
detectors representing local oriented or curved local oriented lines, respectively.

The elongation parameter allows for representing smaller or larger line segments. Our
colleague Michael P�otzsch showed that a higher elongation value s decreases the angle of
intersection of lines which can be distinguished from the �lter responses. The introduction
of curvature allows for a smoother and sparser representation of objects.

With Gabors banana wavelets share important properties of wavelets, such as locality
and reconstructability as well as the possibility to derive all �lters from a mother wavelet
by transformations such as translation, dilatation and rotation.

2.2 Neighborhood and Metric in the Feature Space

In this subsection we de�ne two additional structures or relations between features, a
neighborhood relation and a metric (PF2). The neighborhood relation is utilized for
the feature extraction described in section 3.1 and the metric in the learning algorithm
described in section 3.2.

Let I be a given picture and I(x;y) its value at pixel position (x; y). The discrete six{

8



Standard Parameter Settings

Transformation Banana space Learning Matching

nl = 3 fmax = 2� ex = 4 � = 0.5 �1 = -1.7
no = 8 fs = 0:8 ey = 4 � = 2.5 �2 = 0.8
nb = 5 smin = 0.5 ef = 0.01 p1 = 0.1
nm = 2 smax = 1.0 e� = 0.3 p2 = 0.7
�x = 1.0 cmax = 1.3 ec = 0.4 r1 = 1.0
�y = 2.0 es = 3.0 r2 = 1.5
�s = 0.45 R = 9

Table 1: Standard Settings. Columns 1,2: Parameters of transformation. Column 3:
Metric of the banana space. Column 4: Parameters of learning. Column 5: Parameters
for matching.

dimensional space of vectors ~c = (x; y; l; o; b;m) is called the coordinate space (referred
to as C), where ~c represents the �lter B(f(l);�(o);c(b);s(m)) at pixel position (x; y). The
coordinate space has nl � no � nb � nm � xres � yres elements, xres and yres representing the
resolution of the image I . In the following a neighborhood relation N(~c1;~c2) and a metric
d(~c1;~c2) is de�ned on C. Two coordinates ~c1;~c2 are expected to be neighbors (or have a
small distance d) when their corresponding kernels are similar. For the coordinates pixel
position (x; y), level l and size m it can be assumed that the similarity of corresponding
kernels changes according to the distance of these parameters, i.e., the corresponding
kernels can be thought to be arranged in a four{dimensional cube. For the coordinates
orientation o and curvature b it is more convenient to arrange the corresponding kernels
in a Moebius topology (see �gure 7)1.

More formally, two elements of the coordinate space ~c1;~c2 are called 'neighboring'
(N(~c1;~c2)=TRUE) when they are neighbors in the (x; y; l; o; b;m){grid. Now a distance
measure on C harmonizing with this neighborhood relation is de�ned. The mapping

E(~c) = (x; y; f(l); �(o); c(b); s(m))

=
�
x; y; fmaxf

�l
s ; 2�o

no
; cmax�

2cmaxb
nb

; smin +
m(smax�smin)

ns

� (2)

embeddes the discrete (x; y; l; o; b;m){space C in the continuous (x; y; f; �; c; s){space of
all possible banana wavelets.

1Note that a banana wavelet with orientation �(o) and curvature c(b) rotated by � represents the same
curve than a banana wavelet with orientation �(o) and curvature �c(b)
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Figure 7: Moebius topology. The subspace of orientations and curvatures (o; b) with
no = 16 orientations and nb = 3 curvatures. Top: The banana wavelets on the left are
connected by lines to the wavelets with neighboring indices (o; b) on the right. Connecting
the right edge with the left edge according to these neighborhoods leads to the Moebius
topology shown at the bottom.

A distance measure is de�ned for the orientation{curvature subspace (�; c) expressing
the Moebius topology thereof. Let (ex; ey; ef ; e�; ec; es) be a cube of volume 1 (the choice
of parameters are shown in table 1, column 3) in the feature space. Setting

d((�1; c1); (�2; c2))

= min

�r
(�1��2)2

e2�
+ (c1�c2)2

e2c
;

r
((�1��)��2)2

e2�
+ (c1+c2)2

e2c
;

r
((�1+�)��2)2

e2�
+ (c1+c2)2

e2c

�
(3)

on the subspace (�; c) a distance measure on the complete coordinate space is de�ned by

d(~c1;~c2) =

vuut(x1 � x2)2

e2x
+

(y1 � y2)2

e2y
+

(f1 � f2)2

e2f
+ d((�1; c1); (�2; c2))2 +

(s1 � s2)2

e2s
:

(4)
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The parameters (ex; ey; ef ; e�; ec; es) determine the distances in each one-dimensional sub-
space. A smaller value indicates a stretching of this space.

2.3 Non{Linear Transformations of the Filter Responses

The feature processing of ORASSYLL consists of a two{step non{linear transformation

of the complex �lter responses. In a �rst step the magnitude of the �lter response B
~b is

extracted after the convolution of B
~b with the image I . Let

r(~c) = (AI)
�
~x0;~b

�
=

����
Z
B
~b (~x0 � ~x) I (~x) d~x

���� = ����B~b � I
�
(~x0)

���
be the magnitude of the �lter response B

~b at pixel position ~x0 in image I (or, in other

words, the �lter response corresponding to ~c = (~x0;~b)). A �lter B
~b causes a strong

response at pixel position ~x0 when the local structure of the image at that pixel position

is similar to B
~b. In contrast to the complex �lter response oscillating with phase, the

magnitude of the response is more stable under slight variation of position [36].
The magnitude of the �lter response depends signi�cantly on the strength of edges in

the image. However, here we are only interested in the presence and not in the strength
of edges. Thus, in a second step a function N( ) normalizes the real valued �lter
responses r(~c) into the interval [0; 1]. The value N (~c) represents the systems con�dence
of the presence or absence of a local line segment corresponding to ~c = ( ~x0;~b). This
normalization is based on the \Above Average Criterion":

AAC a line segment corresponding to the wavelet ~c is present if the corresponding banana
wavelet response is distinctly above the average response.

More formally, we de�ne an average response by considering the average response in
the complete feature space and also in a local area of the feature space. Therefore, a
global and a local normalization are performed.

A mean total response is de�ned as Elocal(~x0; fo; I) for the fo-th level at pixel position
~x0 and the mean total response for the fo-th level Etotal(fo) of the banana space by

Elocal(~x0; fo; I) :=< r(~x;~b) >f~x2A(~x0;rE); ~b2B; l=fog

and
Etotal(fo) :=< r(~x;~b) >f~x2I; ~b2B; l=fog
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E Max

Figure 8: The normalization function starts to increase for values larger than the mean
response E(I; fo; ~x0) and becomes almost 
at for values higher than Max(I; fo; ~x0).

where A(~x0; rE) represents the cuboid square with center ~x0 and edge length rE in the
(x; y) space. I represents a set of arbitrary natural images and B is the full set of discrete
banana wavelets at one pixel position. The average response E(I; ~x0) is de�ned as

E(~x0; fo; I) :=
Etotal(fo) + Elocal(~x0; fo; I)

2
:

The function E(~x0; fo; I) has high values when there is structure in the local area around
~x0.2

Now the maximum response in an area of the feature space is de�ned by

Max(~x0; fo; I) = max
~b2B
l=fo

�
r( ~x0;~b)

�
:

The sigmoid function (see �gure 8)

N(t; ~x0; fo; I) = (5)

1

2

�
tanh

�
(�2 � �1)

Max(~x0; fo; I)� E(~x0; fo; I)
� t �

�1 �E(~x0; fo; I)(�2� �1)

Max(~x0; fo; I)�E(~x0; fo; I)

�
+ 1

�

is the �nal normalization function. E(~x0; fo; I) is mapped to �1 and Max(~x0; fo; I) is
mapped to �2 before applying tanh (see also �gure 8, here �1 = �1:7 and �2 = 0:8).

2To reduce the time for calculating the average activities E(~x0; fo; I), only the banana responses for the
smallest size and with zero curvature are used for computation. The responses corresponding to banana
wavelets with same orientation but di�erent curvature or size are highly correlated because they represent
similar features. For the computation of E(I; fo; ~x0), which just represents some kind of average activity,
only one of these similar features has to be taken into account.
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The value N (r(~c)) represents the system's con�dence of the presence of the feature ~b at
position ~x0. According to the above average criterion, this con�dence is high when the
response exceeds the average activity signi�cantly. The exact value of the response is not
of interest. However, a range of indecision of the system when the response is only slightly
above the average activity is still allowed to avoid a very strict decision at this stage.

2.4 Approximation of Banana Wavelets by Gabor Wavelets

The banana response space contains a large number of features, their generation takes a
long time on a sequential computer and requires large memory capacity. For instance, a
transformation of a 128�128 image with the standard settings (as de�ned in table 1) takes
approximately 21 seconds on a Sparc Ultra and requires 80 megabytes of main memory.
In this subsection an algorithm is de�ned to approximate banana wavelets from a small
set of Gabor wavelets and banana wavelet responses from Gabor wavelet responses. Thus
banana wavelets are processed by hierarchical processing (PF3), choosing Gabor Wavelets
as a �rst stage of processing. Figure 9 gives the idea of the approximation algorithm. The
approximation can be performed before the matching (as described in section 4) or in a
virtual mode in which only those features are evaluated \on the 
y" which are actually
requested for the matching. Because of the sparseness of the representations of objects
only a small subset of the banana space is actually used during matching and can therefore
be evaluated very quickly. In case that all banana wavelets are evaluated before matching
we achieve a speed up of a factor 5 by the hierarchical processing. In the virtual mode
memory requirements can be reduced by a factor 20. In [18] a precise de�nition of the
approximation algorithm is given. The current approximation algorithm is based on the
heuristic of local similarity of Gabors and banana wavelets, or, in other words, it is based
on the fact that a curve can be approximated by a set of smaller line segments. Very good
quality of approximation can be achieved with a small number of coe�cients (for details
see the appendix of [18]). An approximation approach based on steerable �lters (see,
e.g.,[9, 33]) may lead to even better approximation (and is probably more satisfactory
from a mathematical point of view) and could be an interesting task for future research.

3 Learning

In this section we describe the representation of objects and its autonomous learning based
on the a priori constraints PL2, PF2, PF4, PE1 and PE2. In subsection 3.1 a sparsi�cation
(PF4) of the image is de�ned. This sparsi�cation reduces the transformed image (with

13



+ = + . . . b 

1 2 3 

b b 

Figure 9: Approximation. The banana wavelet on the left is approximated by the weighted
sum of Gabor wavelets on the right.

the standard settings consisting of more than 5000000 real{valued features) to a small
set of (less than 500) discrete features. In a second step (described in subsection 3.2) we
will describe a learning algorithm (utilizing the constraints PE1 and PE2). The learning
algorithm extracts an e�cient representation of a certain view of an object class from a
set of sparsi�ed images making use of the metric in the feature space. Learning becomes
autonomous by solving the correspondence problem (PL2) as described in subsection 3.3.

3.1 Extracting the Important Banana Responses per Instance

A further stage of preprocessing reduces the number of vectors ~c in the coordinate space
C to represent a certain picture I or a local area of I . The aim is to extract the local
structure in I in terms of local (curved) line segments corresponding to Gabor or banana
wavelets. Some of these lines may be important to represent the speci�c object, but there
will be also line segments representing features which are caused by accidental conditions,
e.g., shadows caused by speci�c illumination, background or object surface texture (see
�gure 10bi-iv).

An important feature in one image (or \per instance") is de�ned by two properties C1
and C2. An important feature per instance

C1 causes a strong response,

C2 represents a local maximum within a local area of the feature space.

More formally, a banana wavelet ~b0 is said to have a \strong response" at a certain
pixel position ~x0 when the response r(~x0;~b0) exceeds a certain threshold. C1 and C2
can now be formalized as follows: A banana wavelet ~c0 = (~x0;~b0) represents a signi�cant
feature per instance if

C1': r(~x0;~b0) > � �E(~x0; fo; I),

14



C2': r(~x0;~b0) � r(~xi;~bi) within a neighborhood of (~x0;~b0).

The parameter � controls the distinctness a feature must exceed the average activity to
be a candidate for a signi�cant feature per instance. A larger value for � reduces the
number of signi�cant features.

One{shot learning: By positioning a rectangular grid on a roughly segmented object
(see �gure 3a,i) in front of homogeneous background and extracting signi�cant features
per instance as described above suitable representations of objects can already be ex-
tracted. These representations are successfully applied to di�cult discrimination tasks.
Figure 10bi{iv) and 3b,d) show the signi�cant features per instance represented by their
corresponding line segments.

3.2 Learning of Object Representations in complex scenes

Now we describe an algorithm to extract invariant local features representing landmarks
for a given class of objects. Here we assume the correspondence problem to be solved, i.e.,
assume the position of certain landmarks of an object, such as the center of left eye or the
midpoint of the right edge of a can, to be known on pictures of di�erent examples of this
objects. In some of the simulations corresponding landmarks are determined by manual
construction, for the rest manual intervention is replaced by motor controlled feedback
(3.3). According to PL2, it is indispensable for learning to ensure that comparable entities
are used as training data, otherwise the e�ect of learning will decrease because of the noise
of the training data. Furthermore, it is advantageous to split a large learning problem
(such as the learning of a representation of a face) into smaller subproblems (such as
learning the representation of the eye region or the top of the head). This learning with
comparable and smaller entities is the meaning of the constraints PL1 and PL2.

Brie
y, the learning algorithm works as follows: The signi�cant features per instance
are extracted (as described in section 3.1) for di�erent images of an object taken at a
certain pose within an rectangular region surrounding the landmarks3. For each landmark
all these features are collected into one bin. A certain feature is de�ned as signi�cant when
this feature or a similar feature (according to the metric (4)) occurs often in the bin, i.e.,
it occurs often in the di�erent images of the training set. The result is a graph with
its nodes labeled with elements of the banana coordinate space (or corresponding line
segments) expressing the learned signi�cant features (see, e.g., �gure 10v) and its edges
labeled by the spatial relations of the landmarks. It is referred to such a representation

3In the standard settings the width R of the rectangular region is 9.
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i) ii) iii) iv) v) 

Figure 10: a: Pictures for training. bi{iv: Extracted signi�cant features per instance. bv:
the learned representation. ('Coca-Cola,' 'Coke,' 'Coca-Cola Classic,' and the Dynamic
Ribbon device are trademarks of The Coca-Cola Company)

of an object class O as SO and to the set of elements of the coordinate space representing
the k{th landmark as SOk .

A signi�cant feature should be independent of background, illumination or accidental
qualities of a certain example of the object class, i.e., it should be invariant under these
transformations of an object class (PE1). This is realized by measuring the probability
of occurrence of features in a local area of the banana space for di�erent examples. The
remaining features of the learning algorithm are those features which occur often in the
training set. The metric allows the grouping of similar features into one bin, but it also
allows the reduction of redundancy of information (PE2) by avoiding multiple similar
features in the learned representation.

Formally speaking, let I be a set of pictures of di�erent examples of a class of objects of
certain orientation and approximately equal size. I(j;k) represents a local area in the j-th
image in I with the k-th landmark as its center. Let ~skij be the i-th important feature per

instance extracted in the area I(j;k) (see �gure 11a, each data point represents one element
~skij). All ~s

k
ij for a speci�c k are collected in one set S

k. Then the LBG{vector quantization

algorithm [23] is applied to Sk. After vector quantization a codebook C1 expresses the
vectors ~skij with a constant number nC1 of code book vectors ~c1i 2 C1 � C;~c1i : 1; : : : ; nC1

(�gure 11b). nC1 depends on the number of entries in Sk: nC1 = p1jS
kj; 0 < p1 � 1. In

case of a large p1 the initial code book has a higher density in the training set.

16



a) b) c) 

d) e) f) 

Figure 11: Clustering (detailed description see text): a) Distribution of data. b) Codebook
Initialization. c) Codebook vectors after learning. d) Substituting sets of codebook vectors
with small distance (< r1) by their center of gravity. e) Counting number of elements
within radius r2. f) Deleting codebook vectors representing insigni�cant features.

The LBG{algorithm reduces the distortion error, i.e., the average error occurring
when all elements of Sk are substituted by the nearest codebook vector in C1. In case
of high densities of elements ~skij in Sk it may be advantageous in terms of the distortion
error to have code book vectors ~c and ~c 0 with small distance d(~c;~c 0). But the signi�cant
features for a certain class of objects are expected to express independent qualities (P2),
i.e., they are expected to have large distances in the banana space. A smaller codebook
C2 is constructed in which the ~c;~c 0 2 C1 with close distances are replaced by their
center of gravity: Let r1 2 IR+ be �xed. For all ~c 2 C1 the number of ~c 0 2 C1 with
distance d(~c;~c 0) < r1 (�gure 11c) is computed. If there exists at least one such ~c 0 6= ~c all
the codebook vectors in C1 with d(~c;~c 0) < r1 are substituted by their center of gravity
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(�gure 11d). C2 now represents a code book with a lower or equal number of elements
than C1, with redundant codebook vectors being eliminated. Now the important features
for the k-th landmark of a certain object can be de�ned as those codebook vectors ~c 2 C2

for which a certain percentage p2 of ~skij exists with d(~c;~skij) < r2 (�gure 11e,f). These

important features are collected in a set SOk which is our learned representation of the
k-th landmark of the given class of objects.

Compared to one{shot learning, learning over di�erent examples leads to better repre-
sentations, because di�erent manifestations of 2D{views of objects are taken into account.
This can be demonstrated for instance in the matching results for hand posture recog-
nition, in which the representations extracted by one{shot learning achieve already good
results (see table 3, row 3) on the easier test set (Set 1 without varying background and
illumination), but signi�cantly lower recognition rates on the more di�cult Set 2 and Set
3. The matching with learned hand posture representations (row 1 and 2) achieves high
performance on all sets. The same holds true for matching with face representations (see
table 2).

3.3 Autonomous Learning

In �gure 10 we de�ned the position of landmarks and their arrangement in a 
exible grid
are manually. To avoid the manual generation of ground truth we can either apply one{
shot learning (see section 3.2) or make use of motor controlled feedback: By moving an
object with a robot arm and following the object by keeping �xation relative to the robot
hand using its known 3D position, we produce training data in which a certain view of an
object is shown with varying background and illumination but with corresponding land-
marks in the same pixel position within the image (see �g 2b,d). Now the 
exible grid can
be substituted by a rectangular grid roughly positioned on the object and the interaction
of the camera and the motor controlled feedback ensures that landmarks are positioned
at corresponding pixel position on the object (see �gure 2) and the very same learning
algorithm as described in section 3.2 for manually de�ned landmarks can be applied (see
�gure 2v for autonomously learned representations). In this way reliable representations
can be learned even in complex scenes with varying background and illumination (see,
e.g, �gure 2). The positioning of the grid may be very rough and the grid can have large
overlap with the background (see, e.g., �gure 2b,i). Manual intervention is reduced to
the determination of a rough rectangular area which covers the object at the beginning
of the sequence. Compared to learning within the older system [46, 16, 20], in which for
each view of an object a object{adapted topology for the graph has to be de�ned (and
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varying background could not be handled), this manual intervention is minimal.

4 Elastic Graph Matching with Sparse Object Representa-

tions

To apply the sparse representations for location and classi�cation of objects a similarity
between the extracted representation SO and a certain area in the image has to be de�ned.
We would like to point out that, as in [21, 45]), for matching the complete feature space
is computed. Therefore, sparseness is only a property of the stored object representation
(i.e., a higher stage in the hierarchy of visual processing) and not of the feature space
corresponding to the current image, i.e., the transformation of the image.

A key issue of the approach introduced here is the de�nition of a comparison of the
large continuous{valued feature space with the discrete and binary object representation.
This problem is almost solved by the normalization described in section 2.3 which mediates
between these two di�erent kinds of image respectively object representations.

In this section, the similarity function of a graph labeled with banana wavelets with
certain size and position in an image is de�ned. For the comparison of the sparse object
representation with a local area of the image it is made use of the robustness of the �lter
responses, see [36]. As in [45, 20] the object representation is stable up to a certain size
variation, if this variation becomes too large more than one representation has to be used
to cover di�erent scales.

The robustness of the Gabor magnitude according to scale variation, translation and
rotation in plane and depth is extensively discussed in [21, 36]. Roughly speaking, robust-
ness to scale variation and variation is about 20% [36]. Additional robustness is achieved
by the elasticity of the graph. In our simulations 3 graphs were su�cient to cover a size
variation of up to 2 octaves (see results for face �nding in section 5), which is also the case
within the older system (see [45, 20]). A further possibility to improve robustness (which
is not applied here) is the utilization of explicit transformations within the space of Gabor
wavelet responses (for details see [36]). We also want to stress that high invariance is not
always wanted but that for certain problems (e.g., for the control of a robot arm) exact
positions of objects and the arm are important.

A total similarity expresses the system's con�dence whether there is a certain object
in an image I at a certain position and size. As in the former system local similarities
(expressing the system's con�dence whether a node of the graph represents a local feature)
are averaged.
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The complete graph matching process used in this paper proceeds in three steps. The
matching procedure is performed for all graphs within the representation (e.g., graphs
covering di�erent sizes in face detection or di�erent object classes as for the hand posture
recognition problem (see section 5)). The graph achieving the highest similarity deter-
mines the size and position of the objects within the image, while the positions of its
nodes identify the landmarks.

In the �rst step the graph is shifted across the image while keeping its form rigid. We
use steps of about 3{5 pixel in either direction for this rigid shift. For each position of the
graph we calculate the total similarity of the new positioned graph to the original graph.
The total similarity is just the average similarity over all local similarities. This global
move procedure is able to position the graph on the object. The position which provides
the highest similarity is the starting position for the second step which permits variation
of the scale of the graph distortions. In the third step the nodes are shifted locally and
independently in a small surroundings of their starting position. After this local move
procedure the optimal position of the graph is found at the position which provides the
highest total similarity.

The local similarity is de�ned as follows: For each learned feature in SOk and pixel
position in the image it is simply checked whether the corresponding normalized �lter
response in the image is high or low, i.e., the corresponding feature is present or absent.
Because of the sparseness of the representation only a few of these checks have to be
made, therefore the matching is fast. Because only the important features are used, the
matching is e�cient.

More formally, the local similarity Sim(SOk ; I
(x;y)) between a node labeled with banana

wavelet responses SOk and a pixel position (x; y) in an image I is the average of the normal-
ized �lter responses corresponding to the k-th landmark (i.e., ~ci = (xi; yi; fi; �i; ci; si) 2
SOk ) in the image at the pixel position (x; y):

Sim(SOk ; I
~x0) =

1

jSOk j

X
~ci2S

O
k

N (r(x0 � xi; y0 � yi; fi; �i; ci; si)) ; (6)

where jSOk j is the number of local line segments the k{th node is labeled with.
As in [21, 45, 20] the total similarity Sim(SO; I) between a graph SO at position

(x; y) with size s and the image I is simply de�ned as the average of the local similarities
de�ned above:

Sim(SO; I) =
1

n

nX
k=1

Sim(SOk ; I
~x);

with n represents the number of nodes of the graph.

20



a) b) c) 

12345678901234567
12345678901234567
12345678901234567
12345678901234567
12345678901234567
12345678901234567
12345678901234567
12345678901234567

12345678901234567
12345678901234567
12345678901234567
12345678901234567
12345678901234567
12345678901234567
12345678901234567
12345678901234567

12345678901234567
12345678901234567
12345678901234567
12345678901234567
12345678901234567
12345678901234567
12345678901234567

12345678901234567
12345678901234567
12345678901234567
12345678901234567
12345678901234567
12345678901234567
12345678901234567

Figure 12: Manual de�ned graphs for a) cans, b) frontal faces and c) half pro�les. ('Coca-
Cola,' 'Coke,' 'Coca-Cola Classic,' and the Dynamic Ribbon device are trademarks of The
Coca-Cola Company)

5 Simulations

In this section we demonstrate the applicability of ORASSYLL for a wide range of prob-
lems. Firstly, we learn representations of cans, faces of di�erent poses, hand postures and
di�erent toys (section 5.1). Then we apply some of these representations to the problem
of localizing these objects in complex scenes using the matching algorithm described in
section 4. Additional simulations are performed in [18] and [24].

5.1 Learning of Representation

The learning algorithm described in section 3.2 will be applied to data consisting of
manually provided and automatically generated landmarks.

5.1.1 Learning with Manually Provided Ground Truth

If not stated di�erently the training sets consist of a set of approximately 60 examples of
an object viewed in a certain pose. Here, corresponding landmarks are de�ned manually
on the di�erent representatives of a class of objects (see �gure 12).

Figure 10bi-iv) shows the signi�cant features per instance for some of the can examples
in the training set. Note the high amount of local line segments caused by texture or
background (in the following called structured noise). In the learned representations
(�gure 10v) the amount of structured noise is reduced signi�cantly. Figure 13 shows the
learned representations for faces using manual de�ned graphs as shown in �gure 12. Note
that even di�erences between males and females can be represented and learned within
ORASSYLL (see �gure 13, second and third row). Figure 14 shows learned representation
for ten hand postures.
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Figure 13: Learned Representation for half pro�le faces (left), female faces (middle) and
male faces (right). Note that even the �ne di�erences between male and female faces can
be expressed by curved line segments corresponding to banana wavelets.

With the standard settings of table 1 the transformation (without the approximation
described in section 2.4) of a 128x128 picture needs 21 seconds, the extraction of signi�cant
features per instance takes approximately 0.7 seconds per node and picture and the �nal
learning as described in section 3.2 takes 0.5 seconds for each landmark for a training set
of 60 examples. All simulations were performed on a Sun UltraSparc (167MHz).

5.1.2 Learning with Automatically Generated Ground Truth

To avoid the manual generation of ground truth we make use of di�erent strategies.
The aim is the construction of training data in which a certain object is shown under
changing conditions such as di�erent background and di�erent illumination but with only
slight variation of the position of the landmarks. In these cases the learning algorithm
can be applied to these pictures using a rectangular grid placed on the object (see �gure
15b).

By moving an object, e.g., a toy car, by a robot and following the object with a camera
utilizing the knowledge of the 3D position of the robot's hand a huge amount of ground
truth can be generated for each object which can be moved by a robot arm (see �gure 15a
and �gure 2). For the learning of a representation of cans the can is put on a rotating plate
and background and lighting conditions are changed (see �gure 15b). Figure 16 shows
learned representations for ten hand postures. For each posture the ground truth consists
of a sequence of 20 pictures of the hand posture created by one person in a surrounding
with varying illumination. Small variation of the posture is produced by small movements
of the hand of the person.
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Figure 14: Learned representations of 10 di�erent hand postures. The manually provided
ground truth consists of 6 pictures per hand posture with a grid consisting of approxi-
mately 40 landmarks is placed.

For the generation of ground truth for frontal faces a sequence of pictures were pro-
duced in which six persons are sitting �xed on a chair such that the position of eyes and
nose of the di�erent persons is approximately identical. Illumination and background
are changed as for cans. Furthermore the people change their expression. To extract
representations for di�erent scales the learning algorithm is applied to the very same
pictures scaled accordingly (�gure 17 shows examples of face representations of di�erent
scale matched to di�erent images).

5.2 Matching

Table 2 and 3 show the results for two matching tasks, the localization of faces and
hand postures. For both tasks matching within the approach described in this chapter is
compared to the matching with bunch graphs as described in [46, 20, 43].

The extremely di�cult face test set contains 120 frontal faces with uncontrolled illu-
mination and mostly inhomogeneous background. Size variation of the faces is between
15 and 100 pixel (Figure 17 shows some examples of matches and mismatches on this
data set). The �rst row gives the results for a matching with 3 representation of di�erent
scale. The transformation is not approximated and computation requires 10:7 seconds.
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a) 

b) 

Figure 15: Automatic generation of ground truth for cars and cans and learned repre-
sentation. ('Coca-Cola,' 'Coke,' 'Coca-Cola Classic,' and the Dynamic Ribbon device are
trademarks of The Coca-Cola Company)

Matching Results for Face Finding

Repres. Transformation Performance

nb. reps rep approx sec. sec. match Recog.

1) 3 standard no approx. 10.7 2.2 77 %
2) 3 standard approx. 3.3 2.2 77 %
3) 3 standard virtual 1.5 7.1 77 %
4) 3 no curvature 1.5 2.1 73 %
5) 3 one instance approx. 3.3 2.9 63 %

6) 3 bunch graph 1.1 { 5.4 3.5 { 98 35 { 54 %

Table 2: Matching results for face �nding (for interpretation see text).

Matching with three representations takes 2.2 seconds and faces were found correctly for
77% of the images. The second row gives the results when the transformation is approx-
imated as described in section 2.4. Recognition rate is unchanged but feature generation
requires only 3.3 seconds instead of 10.7 seconds4. The third row shows the results in case
of approximation in the virtual mode. The transformation only requires 1:1 seconds (only
the Gabor transformation has to be performed) but matching time increases signi�cantly

4Note that for hand posture recognition a slight decrease of performance in case of approximation
occurs.
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Figure 16: Representations of hand postures learned with automatic generated ground
truth

Figure 17: Face �nding with autonomously learned representations for three scales. The
mismatch (right) is caused by the person's unusual arm position.

to 7:1 seconds because the the banana wavelet responses have to be computed \on the

y". In row 4 only non{curved kernels are used: only a slight decrease of performance
can be achieved5. The simulations corresponding to the �fth row were performed with
representations extracted from only one image. Performance decreases to 63%. The per-
formance with the bunch graph approach as described in [46, 20] is given in the sixth row.
We have tried di�erent settings for the number of frequencies and orientation. For the
best setting recognition rate was 54%.

The test sets of hand postures contain images of 10 di�erent gestures (as shown in

5The role of curvature is discussed in more detail in section 6.
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Matching Results for Hand Posture Recognition

Repres. Trafo Performance

rep approx sec. sec. match Set 1 Set 2 Set 3

1) no approx 17.0 9.5 93 73 90
2) approx 4.9 9.5 93 72 80
3) one instance approx 4.9 12.4 80 52 52

4) bunch graph 0.9 18.0 93 76 65

Table 3: Matching results for hand gesture recognition (for interpretation see text).

�gure 14) in front of homogeneous background with controlled illumination (Set 1), in-
homogeneous background with controlled illumination (Set 2), and inhomogeneous back-
ground with varying illumination (Set 3)6. There was only slight size variation, therefore
one representation for each hand posture was su�cient to cover the size variation. The
�rst row gives the results for a matching with the standard settings. The transformation
is not approximated and computed in 17:0 seconds. Matching with ten representations
takes 9:5 seconds and recognition rate was 93% (set 1), 73% (set 2) and 90% (set 3). The
second row gives the results when the transformation is approximated as described in sec-
tion 2.4. Recognition rate is slightly changing, in case of set 3 even signi�cantly. Feature
generation requires only 4.9 seconds instead of 17 seconds. The simulations correspond-
ing to the third row were performed with representations extracted from only one image.
Performance decreases to 80% (set 1), 52% (set 2) and 52% (set 3). The performance
with the bunch graph approach as described in [43] is given in the fourth row. For test set
1 and 2 performance is comparable to ORASSYLL (in case of set 2 even slightly better).
For set 3 performance is signi�cantly worse compared to ORASSYLL.

In [18] simulations with other objects are performed to investigate the in
uence of
variation of background and illumination within the bunch graph approach and ORAS-
SYLL. In [24] face recognition with binarized banana wavelets was performed on a very
large data set (more than 700 pictures) with size variation of faces between 40 and 60
pixel, inhomogeneous background and uncontrolled illumination. For this set performance
was 95%.

6In set 1 and set 2 the pictures were taken from di�erent individuals. In set 3 a sequence of 20 pictures
of each pose of one individual were recorded. This person slightly changed position and appearance of the
hand posture while background and illumination was varying.
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6 Comparison with Jet{based Systems

ORASSYLL has been heavily in
uenced by an older and well known vision system [21,
46, 20, 43], and has been equally in
uenced by Biederman's criticism of this older system
[3]. The system [21, 46] was successfully applied to face recognition. High correlation
between the system's and human's face recognition performance has been shown [3, 12].
However, Biederman and his associates [8, 3] also have shown that the system [21, 46]
has only low correlation to human object recognition, indicating signi�cant di�erences
between object and face recognition.

We present a short description of the system [21, 46] | in the following called former
or older system | in section 6.1. In section 6.2 di�erences between the older object recog-
nition system and ORASSYLL are discussed and problems with the application of some
of the basic entities of the older system (i.e., jets and bunches of jets) for object recogni-
tion are stressed. We argue that binarized Gabor or banana wavelets are a more suitable
feature for this purpose. In this sense, a supplement to Biederman's arguments (which is
merely based on psychophysical experiments) in terms of functional or algorithmic reasons
is given.

6.1 Jets and Bunch Graphs

As models for objects the older system also employs labeled graphs. The edges of graphs
are labeled with distance vectors between node positions. Nodes are labeled with jets
[21] or bunches of jets [46], respectively. In a bunch of jets each jet is derived from the
image of a di�erent example of the view of an object. A bunch is thus covering a variety
of forms a single landmark may take. This structure is called bunch graph [46].

Jets are derived from a set of linear �lter operations in the form of convolutions of the
image with a set of Gabor wavelets, see e.g. [6], of di�erent wavelength and orientation
(see �gure 18a). A jet is formed by the set of complex values rendered by all wavelets
centered at a given position of the image (see �gure 18b). Due to the spatial extent of the
wavelets, jets describe a local area around their position. A bunch B of jets taken at the
same landmark (that is, at corresponding positions) of di�erent examples of a certain view
of an object class forms a generalized representation of this landmark (see �gure 18c).

A bunch graph for a given view of an object class is created by placing an appropriate
graph over a certain number of example images, adjusting the position of each node
manually to the correct position of its landmark and letting the system extract the jet
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Figure 18: Representation of objects: a) a Gabor wavelet (real part). b) a jet calculated
as a set of Gabor wavelets (the discs symbolize the di�erent frequencies and directions of
~k). c) a bunch graph.

at that position7. All jets for a given landmark are attached as a bunch to that node.
For each landmark, node positions (measured relatively to the center of gravity of their
graph) are averaged, and the distance vectors between these average positions are stored
as edge labels. One such bunch graph represents objects at a certain pose and size (see
�gure 18c).

Jet components aj (the index j standing for length and orientation of the components'
wave vectors) are the magnitude (which is slowly varying with position) of Gabor wavelet
reponses. The similarity between two jets J and J 0 is de�ned as the normalized scalar
product of the two jets:

S(J ;J 0) =
1qP

j a
2
j

P
j a

02
j

�
X
j

aja
0
j (7)

7The time consuming procedure of manually positioning of landmarks can be facilitated by a semi{
automatical procedure: A smaller, manually generated representation is used to place the graphs auto-
matically and these automatically positioned graphs are then checked and corrected manually.
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As a node is actually labeled with a bunch of jets, a bunch similarity S(B;J ) to an
image jet J is de�ned by the maximum similarity of the image jet to all jets of the bunch:

S(B;J ) = max
i
fS(Bi;J )g :

As in the ORASSYLL the average over all node{similarities (as a global similarity) is
optimized by shifting, scaling and distorting the graph during matching.

6.2 Conceptional Di�erences of Object Representations in the Former
System and ORASSYLL

The object representation on ORASSYLL shows six conceptional (D1{D6) di�erences to
the representation based on jets and bunches of jets. Here, in addition to the quanti-
tative comparisons in section 5, we discuss how these di�erences in
uence recognition
and learning. We would like to remark that the di�erences (D2{D6) are also valid for
object representations within ORASSYLL based only on binarized Gabor wavelets. In
ORASSYLL

D1 curvature can be explicitly used as a feature, allowing for a sparser and smoother
representation of objects, a better recognition performance and an easier coding of
Gestalt relations.

D2 a restriction to a speci�c set of symbolic features (local (curved) line segments) is
imposed for object representation enabling learning and coding of objects by their
essential features.

D3 object representations are sparse, allowing for fast and e�cient matching.

D4 the metric (4) is utilized as an additional structure of the feature space which
enables grouping similar features together. In this way autonomous learning of
object representations in complex scenes becomes possible.

D5 the local similarity (6) expresses the presence of a local symbolic feature but in a jet
signi�cant and insigni�cant features are lumped together. Therefore the similarity
(6) is more robust against variation of background and illumination compared to
the jet{similarity (7).

D6 only potentially interersting features are coded allowing for e�cient one{shot learn-
ing.
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[1:4],[2:3],[1:11] 
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Parallelism: 
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Collinearity: 
[1,2],[1,3],[2,4],[3,4], 
[6,7],[5,9],[10,11] 

Figure 19: Sparse representation of a can with local curved lines corresponding to ba-
nana wavelets and lists of second order Gestalt relations between the local line segments
(schematic).

D7 manual intervention is substituted by almost autonomous learning.

D1: Banana wavelets are generalized Gabor wavelets; curvature and elongation are
added to the parameters frequency and orientation. The distinction curvature vs. straight-
ness is a non{accidental feature in Biederman's sense, i.e., it describes a non{accidental
property of the visual world: A straight, respectively curved, line in an image will usually
result from a straight, respectively curved, edge in the world, therefore it is an important
feature for the coding of objects and their discrimination. Furthermore, a line draw-
ing with elongated curved local lines is smoother and also requires fewer line segments
compared to a line drawing with shorter straight lines.

To emphasize the impact of utilizing curvature (D1) we would like to remark that a
curved and elongated local line represents a feature of higher complexity compared to a
short straight local line. The Gestalt principles collinearity ([1,2],[1,3],[2,4],[4,3],[10,11]),
symmetry ([1,4],[2,3],[1,11]) or parallelism ([4,11]) in �gure 19 could not be coded as
second order relations of non curved lines.

D2: A jet represents the whole local image patch transformed to the Gabor space. As
a consequence the image is reconstructable from jets [48, 37]. A complete reconstruction
of the original image can not be regained from a representation with binarized Gabor or
banana wavelets. Our reproduction of an object by local (curved) lines gives a restricted
representation of the object by neglecting speci�cs of local patches such as the strength
of edges or texture. However, this restricted representation is recognizable for humans,
therefore seems to contain | despite the enormous reduction of data | relevant features
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Figure 20: Learning of the top of the head from varying background with binarized banana
wavelets (schematic).

used in the human visual system.
We argue that the serious restriction to local (curved) line segments, despite the

indisputable loss of information (revealed in the unreconstractability) is advantageous
and necessary for learning: The restricted receptiveness of the object recognition system
facilitates the perception of important features and feature relations (see �gure 19). As
an additional evidence for the restriction to local (curved) lines, we argue that humans
are easily able to give a description of a scene or an object as a simpli�ed line drawing.

D3: The object representation described in ORASSYLL is essentially sparse, only few
binary features taken from a large feature space are used to represent objects. In the bunch
graph approach a large collection of continuous{valued vectors (jets), each representing
an example of a local image patch, are used for object coding. In both approaches,
matching time and memory requirements scale linearly with the amount of data stored
in the representation of objects. The bunch graph approach, in which a whole bunch of
manifestations is stored, requires much more memory capacity and matching time. For
the representation of faces it is shown in [18] that the required memory can be reduced
by a factor on the order of thousand.

D4: The metric (4) re
ects the similarity or dissimilarity of kernels, measuring dif-
ferences in the properties location, orientation and curvature, and allows to group similar
features together while keeping di�erent features separately. Learning allows to distin-
guish between signi�cant features (e.g., the curved horizontal line of the top of the head)
and insigni�cant features (e.g., corresponding to the background) and to keep only the sig-
ni�cant features within the object representation (see �gure 20). In this way the manual
intervention necessary within the older system is substituted by autonomous learning.

D5: In a jet, signi�cant and insigni�cant features are lumped together. Even when
a single Gabor wavelet response gives information about the occurrence of a local line
with a certain orientation, a jet always represents the whole local image patch. The jet
similarity (7) re
ects the relative strengths of a complete set of Gabor wavelet responses
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at the actual pixel position, and therefore re
ects the �t to a whole local region. For
example, a local area of an object may have an edge with a certain orientation resulting
in a strong response of the corresponding Gabor wavelet. The occurrence of an edge with
di�erent orientation in the background causes a strong response for the Gabor wavelet
with di�erent orientation. Because the denominator in equation (7) increases by the
\background{response", the relative strength of Gabor wavelet responses, and therefore
the similarity (7) changes. However, for face discrimination the relative strength of �lter
responses probably is a useful feature capturing important aspects of face surfaces.

The similarity of a binarized banana wavelet to a local image patch indicates the pres-
ence or absence of the learned feature fairly independently of background and illumination
and allows for a comparison of only the learned and signi�cant features to the image. In
[18] it is demonstrated that jet similarity (7) is less robust under variation of illumination
and background compared to the local similarity (6) within ORASSYLL.

D6: The criterion C1 (section 3) ensures that a node of a graph is labeled with
a feature only when there occurs relevant structure within the training image. Within
the older jet{based systems features are extracted at each node without checking its
relevance. One{shot learning (as demonstrated in subsection 3.2) in which a rectangular
grid is placed on a roughly presegmented object in front of homogeneous background is
more di�cult within the jet{approach because each node of a jet{grid is always labeled
by a jet, even when the node corresponds to the homogenous background or untextured
surface of the object.

D7: Within the older system an object adapted graph has to be de�ned for each size
and object class. Furthermore, to create a bunch graph this graph had to be positioned
by manual control on a set of approximately 50 individuals. This procedure took approx-
imately 4 to 8 hours for each object class. Within ORASSYLL all we have to do is to
cover the object with a rectangular grid. By one{shot learning an object representation
can be extracted with which we already achieve high recognition rates (see section 5). By
utilizing the interaction of camera and robot (see �gure 2) and also presupposing only
a very rough covering of the object with a rectangular grid, we are able to extract e�-
cient representations even in complex scenes. This would be impossible within the older
representation as pointed out in item D4.

7 Comparison with other Object Recognition Systems

Object recognition systems utilize di�erent amount of a priori knowledge. At one extreme,
there exist systems which apply learning algorithms directly to grey{level pictures. The
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algorithms can be called \neural" such as back-propagation or RBF{Networks, e.g., [41],
or strategies of classical pattern recognition like Bayesian estimation methods, e.g., [10].
These systems apply a very small amount of constraints. The lack of a priori knowledge
makes them applicable to any kind of problem, let it be the prediction of time series,
speech recognition or vision, but they pay for this generality with bad generalization
properties and unrealistic learning time. In other words, those systems fall into the trap
of the variance problem [11].

As an extreme on the other side of the bias/variance dilemma there exist a large variety
of systems putting a huge amount of structural knowledge into their system. As only one
example in [14] football players are tracked. As a priori knowledge the structure of the
background, i.e., the football �eld with its strict regulated lines and signs, is explicitly
used. It is unthinkable to use such systems in other surroundings.

We assume these extremes are non{realistic attempts to build an e�cient object recog-
nition system because they are either caught in the bias or, in the variance trap. In the
following we will compare ORASSYLL with some other attempts.

Cootes et. al. [4] introduce an object recognition system which is also based on line
segments. The line segments are not as local as in our approach but they describe larger
regions, e.g., the contour of the face from the left ear down to the chin up to the right
ear. These representation of objects have to be de�ned manually. A similarity between
this and our system is the restriction to local lines to describe objects. As an advantage
of ORASSYLL, we regard the locality and metric organization of features which enable
autonomous learning of representations of objects.

Zerroug and Nevatia [50] designed a system concerned with shape from shading. As
a priori knowledge they assume a very complex model of 3D object representation. For
certain well de�ned object classes (straight homogeneous generalized cylinders (SHGCs))
they are able to extract a 3D representation from 2D images. In its current state, ORAS-
SYLL is only concerned with 2D views of objects which makes the comparison of both
systems di�cult. However, as a fundamental design di�erence I would like to point to the
openness of ORASSYLL. It can deal with any kind of object which is representable as an
arrangement of local (curved) line segments and is not restricted to speci�c subclasses.
In future research, we intend to learn higher object regularities within ORASSYLL which
are presupposed within [50].

Hummel and Biederman [13] introduced an object recognition system based on Bie-
derman's geon theory. In this system geons are inherently part of the system. In [19] the
perspective of learning structures of geon{like complexity within ORASSYLL is discussed.

In [44, 27, 28] object recognition systems are introduced which are based on principle

33



component analysis (PCA) methods applied to the grey level picture. PCA leads to a
fast reduction of data by a linear transformation. We would like to remark, that from a
biological point of view, in the human visual system there are no hints for data compression
but a lot of hints for a data spreading in the �rst stages of visual processing [31]. A problem
of PCA{methods is the restriction to linearity of transformations (for a discussion of this
problem and some attempts to deal with it see [7].) Within ORASSYLL non{linear
transformations (e.g., equation (5) and the criteria C1 and C2 in section 3) play an
important role. In [17] it has been shown that these non{linearities lead to signi�cant
di�erences.

The lack of locality of features in PCA methods leads to sensitivity to varying back-
ground, partial occlusion and clutter. ORASSYLL shows high robustness to background
variation as demonstrated in the simulations in section 6.2 and [18]. The features used
within ORASSYLL are local in space (PL1) which makes the representation robust against
at least partial occlusion (see also, [47]). Because the optimized total similarity is an av-
erage over local similarities local changes do not in
uence the total similarity very much.
Furthermore, the similarity is rather independent in the quality orientation at a �xed
position: For instance, a background edge with di�erent orientation than the edge within
the learned representation does not in
uence the simlilarity much.

We see our system not as a �nal stage, but as a basis for an more elaborated system
which possesses an additional level of representation in which local features are grouped
to more complex features. For this grouping process we �nd it important to organize the
object representation of lower levels in a structured form, or more speci�cally, to equip
the representation with meaningful features such as the qualities position, curvature and
orientation. This enables the de�nition of relations such as collinearity, parallelism or
symmetry (see �gure 19). We see this as an important di�erence to the above{mentioned
PCA{based methods, neural network based systems (such as, e.g. [38]) or Bayesian meth-
ods (such as [34, 27]). In this kind of systems the interpretation of lower and intermediate
stages of representation becomes di�cult.

Histogram methods such as [26, 39, 42] can take advantage of the power of multiple
cues and have the ability of fast image processing and recognition. For instance [26]
applies, in addition to Gabor wavelets, cues such as color, vertices, blobs and contours.

In contrast to the histogram approaches [26, 39, 42] ORASSYLL deals with two tasks
at the same time: localization and discrimination. For some tasks (e.g., when grasp-
ing is involved) localization of objects is important. Furthermore, ORASSYLL showed
high robustness against changes of background, which is di�cult within the histogram
approaches. Even learning within these di�cult situations is possible with our system.
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In its current state ORASSYLL uses local (curved) line detectors for its object repre-
sentation only. Current and future research addresses the integration of additional cues
such as color and texture. In contrast to histogram methods ORASSYLL has a highly
structured internal representation on the expense of slower processing. We intend even
to increase this internal structure, e.g. by utilizing relations such as collinearity or paral-
lelism (see [25, 17]) in which we see a great potential for improvement.

In this context a more e�cient organization of the object data base (e.g. by indexing
(see, e.g., [2]) or hierarchical organisation (see, e.g., [30])) can lead to improvement of
matching speed. Within ORASSYLL the comparison with the data base is still a linear
search, therefore in case of the ten class discrimination and localization problem of hand
posture recognition the graph matching time is ten times higher than in case of localizing
one posture only. Sparse coding of objects and the approximation algorithm already lead
to a fast matching which could be further improved by more e�cient search strategies.

As mentioned above, our symbolic representation of objects allows for application of
relations such as collinearity and parallelism. Another example, which is essential for
our learning algorithm, is the metric (4). There exist a variety of other systems making
use of iconic representations (see, e.g., [5, 40, 29, 1, 34, 32]). In contrast to most of
these icon{based systems our icons (or symbols) have a parametrized description and
symbolic meaning which allows for the de�nition of such relations and also allows for the
reconstruction of objects in an extremly sparse way.

In the object recognition system [1] an object is coded by icons consisting of high{
dimensional vectors obtained from the reponses of Gaussian derivative spatial �lters. This
representation has some similarity to the Jet{based system [46] discussed extensively in
section 6.

In [40] saliency map graphs are applied. Their icons are peaks of saliency maps
which are stored on a graph the nodes which are arranged due to the scale level in a
hierarchical fashion. A multiresolution representation resembling in some aspects to [40]
was introduced in [5] in which objects also are represented by graphs with its nodes labeled
by peaks of an energy surface. In contrast to [40] in [5] a scheme for grouping features is
given.

In [29] a representation is applied which is based on spatially loosely connected bound-
ary fragments resembling cubist drawings. Their reconstruction of objects has some sim-
ilarity to the one introduced here, although no learning is applied.

In detail very di�erent from our approach, in [34] an object learning method is dis-
cussed which addresses some aspects of the learning problem in a line of thinking similar
to our work. Learning, as it is formulated in [34] in a quite abstract way merely based
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on probabilty distributions, is thought to realize similar aspects such as the a priori
constraints E1 and E2.

Beside sparseness and autonomous learning we see the meaningfulness of our features
and the ability to reconstruct objects with those features as important di�erences to the
above{mentioned icon{based systems.

A very interesting work about the visualization of faces is presented in [32]. Pearson
describes an algorithm to reduce face representation to black/white images for fast data
transfer. Although ORASSYLL is not primarily thought for the data compressing task
and we do not claim that our representation is able to represent individual faces but rather
the object class 'faces', we remark, that our symbolic representation of faces may allow
for an even greater reduction (only about 50 symbols or icons are necessary to represent
a face) and the application to e�cient data transfer might be an interesting application
of our representation.

8 Outlook

The introduced object recognition system is founded on re
ections about the structure
and the necessary amount of a priori knowledge such a system might require. By applying
this knowledge representations of objects can be learned autonomously in di�cult learning
situations. These representations can be successfully applied to di�cult discrimination
tasks. ORASSYLL has shown its superiority as an object recognition system to the well
established system [21, 46].

Autonomous learning became possible by interaction of action and perception: the
correspondence problem was solved by shifting attention depending on the shifted object.
An important extension of this idea is the treatment of general rigid body motion, i.e.
consideration of rotation in addition to translation. Including the knowledge about the
change of features under this general motion potentially allows for learning in more general
situations. A further important extension (on which my colleague Michael P�otzsch [35]
is working on) is the combination of matching and learning. He intends to combine a
successfull match with an already extracted representation (e.g., by one{shot learning)
with a following learning iteration.

Two important issues of the object recognition problem are not addressed in the
current work: Firstly, a full 3D{representation of objects (as done e.g., in [28, 34, 13]).
In its current state ORASSYLL applies view{based representations which are robust up
to a certain degree to scale variation and rotation because of the robustness of Gabors
and the elasticity of the graph. One possible way of dealing with the full 3D{problem is
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a representation of objects by a set of views (see, e.g., [20]).
A second important issue is a full utilization of the potential of active vision (as done

e.g., in [1]). The successful interaction of attention and arm movement in our learning
algorithm already gives an example for this potential. Beside the introduction of an
additional layer of abstraction by grouping our features to more complex entities and the
integration of additional cues (such as color and texture) we see these tasks as important
challenges for a system which comes closer to human performance. We argued that
ORASSYLL can be a suitable intermediate stage for such a system.

We believe that the system presented here is not a dead end, but will also be a good
basis for further improvement. Beside the issues addressed above the integration of other
cues such as disparity information, movement and colour to support form processing at
a higher stage of object representation will be a important tasks for future research.

Acknowledgement: We would like to thank Christoph von der Malsburg, Laurenz
Wiskott, and Michael P�otzsch for fruitful discussions and two reviewers for valuable sug-
gestions.
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